[1]
|
du, l. and ha, c. (2020) epidemiology and pathogenesis of ulcerative colitis. gastroenterology clinics of north america, 49, 643-654.
|
[2]
|
bai, j., wang, y., li, f., wu, y., chen, j., li, m., et al. (2024) research advancements and perspectives of inflammatory bowel disease: a comprehensive review. science progress, 107, 1-37.
|
[3]
|
kobayashi, t., siegmund, b., le berre, c., wei, s.c., ferrante, m., shen, b., et al. (2020) ulcerative colitis. nature reviews disease primers, 6, article no. 74.
|
[4]
|
guo, m. and wang, x. (2023) pathological mechanism and targeted drugs of ulcerative colitis: a review. medicine, 102, e35020.
|
[5]
|
王少鑫, 浦江, 刘超群, 等. 炎症因子tnf-α、il-6和il-4在溃疡性结肠炎中的表达及临床意义[j]. 胃肠病学和肝病学杂志, 2015, 24(1): 104-106.
|
[6]
|
griffiths, o.r., landon, j., coxon, r.e., morris, k., james, p. and adams, r. (2020) inflammatory bowel disease and targeted oral anti-tnfα therapy. advances in protein chemistry and structural biology, 119, 157-198.
|
[7]
|
vulliemoz, m., brand, s., juillerat, p., mottet, c., ben-horin, s. and michetti, p. (2020) tnf-alpha blockers in inflammatory bowel diseases: practical recommendations and a user’s guide: an update. digestion, 101, 16-26.
|
[8]
|
lamb, c.a., o’byrne, s., keir, m.e. and butcher, e.c. (2018) gut-selective integrin-targeted therapies for inflammatory bowel disease. journal of crohn’s and colitis, 12, s653-s668.
|
[9]
|
gamliel, a., werner, l., pinsker, m., salamon, n., weiss, b. and shouval, d.s. (2020) circulating α4β7 memory t cells in pediatric ibd patients express a polyclonal t cell receptor repertoire. clinical and experimental gastroenterology, 13, 439-447.
|
[10]
|
cluny, n.l., nyuyki, k.d., almishri, w., griffin, l., lee, b.h., hirota, s.a., et al. (2022) recruitment of α4β7 monocytes and neutrophils to the brain in experimental colitis is associated with elevated cytokines and anxiety-like behavior. journal of neuroinflammation, 19, article no. 73.
|
[11]
|
zhang, h., zheng, y., pan, y., lin, c., wang, s., yan, z., et al. (2020) a mutation that blocks integrin α4β7 activation prevents adaptive immune-mediated colitis without increasing susceptibility to innate colitis. bmc biology, 18, article no. 73.
|
[12]
|
yan, j., ding, x., wu, j., liu, a., fang, l. and xu, y. (2024) real-life effectiveness and safety of vedolizumab in moderate-to-severe ulcerative colitis: a single-center experience in northern china. medicine, 103, e38759.
|
[13]
|
dhillon, s. (2022) carotegrast methyl: first approval. drugs, 82, 1011-1016.
|
[14]
|
verstockt, b., salas, a., sands, b.e., abraham, c., leibovitzh, h., neurath, m.f., et al. (2023) il-12 and il-23 pathway inhibition in inflammatory bowel disease. nature reviews gastroenterology & hepatology, 20, 433-446.
|
[15]
|
jefremow, a. and neurath, m.f. (2020) all are equal, some are more equal: targeting il 12 and 23 in ibd—a clinical perspective. immunotargets and therapy, 9, 289-297.
|
[16]
|
zhang, w., zhong, g., ren, x. and li, m. (2024) research progress of ustekinumab in the treatment of inflammatory bowel disease. frontiers in immunology, 15, article 1322054.
|
[17]
|
scheibe, k., backert, i., wirtz, s., hueber, a., schett, g., vieth, m., et al. (2016) il-36r signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo. gut, 66, 823-838.
|
[18]
|
russell, s.e., horan, r.m., stefanska, a.m., carey, a., leon, g., aguilera, m., et al. (2016) il-36α expression is elevated in ulcerative colitis and promotes colonic inflammation. mucosal immunology, 9, 1193-1204.
|
[19]
|
harusato, a., abo, h., ngo, v.l., yi, s.w., mitsutake, k., osuka, s., et al. (2017) il-36γ signaling controls the induced regulatory t cell-th9 cell balance via nfκb activation and stat transcription factors. mucosal immunology, 10, 1455-1467.
|
[20]
|
zhu, j., xu, y., li, z., liu, s., fu, w. and wei, y. (2022) interleukin-36β exacerbates dss-induce acute colitis via inhibiting foxp3 regulatory t cell response and increasing th2 cell response. international immunopharmacology, 108, article 108762.
|
[21]
|
philips, r.l., wang, y., cheon, h., kanno, y., gadina, m., sartorelli, v., et al. (2022) the jak-stat pathway at 30: much learned, much more to do. cell, 185, 3857-3876.
|
[22]
|
salas, a., hernandez-rocha, c., duijvestein, m., faubion, w., mcgovern, d., vermeire, s., et al. (2020) jak-stat pathway targeting for the treatment of inflammatory bowel disease. nature reviews gastroenterology & hepatology, 17, 323-337.
|
[23]
|
li, y., yang, x., han, j., bai, b., li, y., shang, c., et al. (2023) peimisine ameliorates dss-induced colitis by suppressing jak-stat activation and alleviating gut microbiota dysbiosis in mice. journal of pharmacy and pharmacology, 76, 545-558.
|
[24]
|
li, j., huang, y., zhang, y., liu, p., liu, m., zhang, m., et al. (2023) s1p/s1pr signaling pathway advancements in autoimmune diseases. biomolecules and biomedicine, 23, 922-935.
|
[25]
|
sun, g., wang, b., wu, x., cheng, j., ye, j., wang, c., et al. (2024) how do sphingosine-1-phosphate affect immune cells to resolve inflammation? frontiers in immunology, 15, article 1362459.
|
[26]
|
zou, f., wang, s., xu, m., wu, z. and deng, f. (2023) the role of sphingosine-1-phosphate in the gut mucosal microenvironment and inflammatory bowel diseases. frontiers in physiology, 14, article 1235656.
|
[27]
|
iwatani, s., iijima, h., otake, y., amano, t., tani, m., yoshihara, t., et al. (2020) novel mass spectrometry‐based comprehensive lipidomic analysis of plasma from patients with inflammatory bowel disease. journal of gastroenterology and hepatology, 35, 1355-1364.
|
[28]
|
snider, a.j., kawamori, t., bradshaw, s.g., orr, k.a., gilkeson, g.s., hannun, y.a., et al. (2008) a role for sphingosine kinase 1 in dextran sulfate sodium‐induced colitis. the faseb journal, 23, 143-152.
|
[29]
|
pulkoski-gross, m.j., uys, j.d., orr-gandy, k.a., coant, n., bialkowska, a.b., szulc, z.m., et al. (2017) novel sphingosine kinase-1 inhibitor, lcl351, reduces immune responses in murine dss-induced colitis. prostaglandins & other lipid mediators, 130, 47-56.
|
[30]
|
montrose, d.c., scherl, e.j., bosworth, b.p., zhou, x.k., jung, b., dannenberg, a.j., et al. (2013) s1p1 localizes to the colonic vasculature in ulcerative colitis and maintains blood vessel integrity. journal of lipid research, 54, 843-851.
|
[31]
|
paik, j. (2022) ozanimod: a review in ulcerative colitis. drugs, 82, 1303-1313.
|
[32]
|
shirley, m. (2024) etrasimod: first approval. drugs, 84, 247-254.
|
[33]
|
bonati, l., motta, s. and callea, l. (2024) the ahr signaling mechanism: a structural point of view. journal of molecular biology, 436, article 168296.
|
[34]
|
xu, l., lin, l., xie, n., chen, w., nong, w. and li, r. (2024) role of aryl hydrocarbon receptors in infection and inflammation. frontiers in immunology, 15, article 1367734.
|
[35]
|
sládeková, l., mani, s. and dvořák, z. (2023) ligands and agonists of the aryl hydrocarbon receptor ahr: facts and myths. biochemical pharmacology, 213, article 115626.
|
[36]
|
pernomian, l., duarte-silva, m. and de barros cardoso, c.r. (2020) the aryl hydrocarbon receptor (ahr) as a potential target for the control of intestinal inflammation: insights from an immune and bacteria sensor receptor. clinical reviews in allergy & immunology, 59, 382-390.
|
[37]
|
marafini, i., monteleone, i., laudisi, f. and monteleone, g. (2024) aryl hydrocarbon receptor signalling in the control of gut inflammation. international journal of molecular sciences, 25, article 4527.
|
[38]
|
hontecillas, r., horne, w.t., climent, m., guri, a.j., evans, c., zhang, y., et al. (2011) immunoregulatory mechanisms of macrophage ppar-γ in mice with experimental inflammatory bowel disease. mucosal immunology, 4, 304-313.
|
[39]
|
dubuquoy, l., rousseaux, c., thuru, x., peyrin-biroulet, l., romano, o., chavatte, p., et al. (2006) pparγ as a new therapeutic target in inflammatory bowel diseases. gut, 55, 1341-1349.
|
[40]
|
picardo, s. and panaccione, r. (2019) anti-madcam therapy for ulcerative colitis. expert opinion on biological therapy, 20, 437-442.
|
[41]
|
reinisch, w., hung, k., hassan-zahraee, m. and cataldi, f. (2018) targeting endothelial ligands: icam-1/alicaforsen, madcam-1. journal of crohn’s and colitis, 12, s669-s677.
|
[42]
|
greuter, t., vavricka, s.r., biedermann, l., pilz, j., borovicka, j., seibold, f., et al. (2017) alicaforsen, an antisense inhibitor of intercellular adhesion molecule-1, in the treatment for left-sided ulcerative colitis and ulcerative proctitis. digestive diseases, 36, 123-129.
|
[43]
|
garcia-carbonell, r., yao, s., das, s. and guma, m. (2019) dysregulation of intestinal epithelial cell ripk pathways promotes chronic inflammation in the ibd gut. frontiers in immunology, 10, article 1094.
|
[44]
|
xu, l., zhang, y., xue, x., liu, j., li, z., yang, g., et al. (2020) a phase i trial of berberine in chinese with ulcerative colitis. cancer prevention research, 13, 117-126.
|
[45]
|
xiong, k., deng, j., yue, t., hu, w., zeng, x., yang, t., et al. (2023) berberine promotes m2 macrophage polarisation through the il-4-stat6 signalling pathway in ulcerative colitis treatment. heliyon, 9, e14176.
|
[46]
|
zhang, j., lin, b., zhang, y., hu, x., liu, t., liu, e., et al. (2024) baitouweng decoction alleviates ulcerative colitis by regulating tryptophan metabolism through dopa decarboxylase promotion. frontiers in pharmacology, 15, article 1423307.
|
[47]
|
蒋晓娟, 王亚东, 孙娟, 等. 白头翁汤正丁醇提取物通过激活bmp信号通路治疗溃疡性结肠炎的作用机制研究[j]. 中国中药杂志, 2024, 49(7): 1762-1773.
|
[48]
|
ding, p., liu, j., li, q., lu, q., li, j., shi, r., et al. (2021) investigation of the active ingredients and mechanism of hudi enteric-coated capsules in dss-induced ulcerative colitis mice based on network pharmacology and experimental verification. drug design, development and therapy, 15, 4259-4273.
|